

General Certificate of Education (Advanced Level) GRADES 12-13 CHEMISTRY SYLLABI (Implemented from 2017)

Department of Science National Institute of Education Maharagama Sri Lanka www.nie.lk

INTRODUCTION

This syllabus had been designed to provide a basic background of chemistry that would be required by those intending to proceed to higher studies as well as by those who would utilize their knowledge of chemistry gained at the GCE(A/L) in various other spheres.

The syllabus comprises 14 units presented in a sequence appropriate (but not mandatory) to be followed during teaching. The presentation of the subject matter in each unit is organized on the basis of competencies.

The experiments indicated in italics at the end of subunits are an essential component of the syllabus, illustrating the link between theory and experiment. This syllabus is effective from 2017onwards.

Changes of the New Syllabus

The following changes have been made in the new syllabus which will be implemented from 2017 onwards.

- The total number of periods was reduced from 468 to 450 giving room for more revision work.
- The flow of the content of **unit 01** has been rearranged and the details of the properties of α , β and γ radiations were removed.
- The content of **unit 02** was rearranged by indicating relevant limitations. (Resonance structures of selected molecules and ions only were considered. Examples: O₃, N₂O, CO₂, CO₃²⁻, NO₃, NO₂ and similar molecules and ions)
- Lattice structures of diamond, graphite and silica have been shifted to unit 06.
- The content of **unit 03** has been expanded and the number of periods has been increased.

The following content has been introduced to **unit 03**.

- More periods have been allocated to solve problems related to stoichiometry.
- Preparation of solutions.

The content of **unit 04** has been restructured.

- The content of **unit 05** has not been changed.
- The content of **unit 06** was changed and restructured.
- IUPAC nomenclature of "*d*" complexes with only one ligand.

The following new practical works have been introduced to **unit 06**

- Showing the presence of nitrogen in air by experiment.
- Standardization of a solution of $S_2O_3^{2-}$ ions using KIO₃ and I.
- Determination of the concentration of a Fe^{2+} ion solution using acidified $KMnO_{4^{+}}$
- Experimental determinations of the concentration of a $K_2C_2O_4$ solution using a standard solution of acidified potassium permanganate.

Some practical works in the former syllabus have been removed from **unit 06**

- Preparation of allotropes of sulphur.
- Preparation of sulphur dioxide and testing its properties.
- Preparation of chlorine.
- Unit 08 and unit 09 have been combined into a single unit under the title hydrocarbons and halohydrocarbons without changing the content.
- The content of **Unit 11** has been rearranged without changing the content.
- The sequence of the content of **unit 12** has been changed.

The following experiments were removed from **unit 12**

- Preparation of an indicator using flowers provided and experimental determination of its pH range
- Determination of the approximate pH value of a given solution using pH indicators

The following experiments have been introduced to **unit 12**

- Titration between sodium carbonate and hydrochloric acid using phenolphthalein and methyl orange.
- The content of **Unit 13** has been changed.
- Bimetallic corrosion, cathodic protection and passivation have been removed.

The following experiments have been removed from unit 13

- Measuring the electromotive force of different cells
- Preparation of hydrogen and oxygen by electrolysis of water
- *Electroplating with copper and silver*
- Experimental study of corrosion as an electrochemical process

The following experiments have been introduced to unit 13

- Experimental determination of relative position of commonly available metals in the electrochemical series.
- Preparation of standard Ag/AgCl(s) electrode
- Units 15 and 16 were completely changed and combined into a single unit unit 14 under the title Industrial chemistry and Environmaental Pollution.

Following content has been removed from **unit 15**.

- Extraction of sodium (Downs cell method)
- Production of common salt
- Production of urea

- Compounding of natural rubber
- Some plant based industries (paper, pharmaceuticals)
- Chromatography (liquid and paper)
- Chemistry of the production of cement.
- Crude oil and cracking/ production of petroleum.

The following content has been introduced **unit 14**

- Uses of ethanol, vinegar, essential oil and biodiesel.
- Effects of plastic additives for polymerization.
- Production and uses of titanium dioxide from rutile.

The following experiment has been removed from Unit 15.

• Separation of mixture of leaf pigments using paper chromatography.

The following experiments were introduced to **unit 14**

- Extracting cinnamon oil from cinnamon leaves by steam distillation.
- Preparation of biodiesel.
- Determination of the percentage of acetic acid in vinegar.

The following content has been removed from **unit 16**.

- Constituents of the ecosphere and their significance.
- Role of biochemical processes maintaining the life on the earth.
- Investigates contamination of soil and the soil waste.

1.1 National goals

- 1. Based on the concept of respecting human values and understanding the differences between the Sri Lankan multi-cultural society, building up the nation and confirming the identity of Sri Lanka by promoting national integrity, national unity, national coherence and peace.
- 2. While responding to the challenges of the dynamic world, identifying and conserving the national heritage.
- 3. Creating an environment which comprises the conventions of social justice and democratic life to promote the characteristics of respecting human rights, being aware of the responsibilities, concerning each other with affectionate relationships.
- 4. Promoting a sustainable life style based on the people's mental and physical wellbeing and the concept of human values.
- 5. Promoting positive feelings needed for a balanced personality with the qualities of creative skills, initiative, critical thinking and being responsible.
- 6. Developing the human resources, needed for the progress of the wellbeing of an individual, the nation as well as the economic growth of Sri Lanka, through education.
- 7. Preparing the people for the changes that occur in a rapidly changing world by adapting to it and controlling them; developing abilities and potentialities of people to face the complex and unexpected occasions.
- 8. Sustaining the skills and attitudes based on justice, equality, mutual respect which is essential to achieve a respectable place in the international community.

National Education Commission Report (2003).

1.2 Basic Competencies

The competencies promoted through the education mentioned below help to achieve the above mentioned National Goals.

i. Competencies in Communication

This first set of competencies is made up of four subsets - Literacy, Numeracy, Graphics and Information Communication skills:

Literacy:	Listening, carefully speaking clearly, and reading for comprehension, writing clearly and accurately.
Numeracy:	Using numbers to count, calculate, code and to measure, matter, space and time.
Graphics :	Making sense of line and form, expressing and recording essential data, instructions and ideas
	with line, form, colour, two and three-dimensional configurations, graphic symbols and icons.
ICT Competencies:	Knowledge on computers, and the ability to use the information communication skills at learning or work as
	well as in private life.

ii. Competencies relating to personality development

- Generic skills such as creativity, divergent thinking, initiative, decision making, problem-solving, critical and analytical thinking, team work, inter-personal relationships, discovering and exploring
- Values such as integrity, tolerance and respect for human dignity.
- Cognition

iii. Competencies relating to the environment

This is the second set of competencies related to the Social, Biological and Physical Environments.

Social Environment:	Awareness, sensitivity and skills linked to being a member of society, social relationship, personal conduct,
	general and legal conventions, rights, responsibilities, duties and obligations.
Biological Environment :	Awareness, sensitivity and skills linked to the living world, man and the ecosystem, the trees, forests, seas,
	water, air and life - plant, animal and human life.
Physical Environment:	Awareness, sensitivity and skills relating to space, energy, fuel, matter, materials and their links with human
	living, food, clothing, shelter, health, comfort, respiration, sleep, relaxation, rest, waste and excretion, media
	of communication and transport.

Included here are the skills in using tools to shape and for materials for living and learning.

iv. Competencies relating to preparation for the world of work

Employment related skills to maximize their potential and to enhance their capacity to contribute to economic development; to discover their vocational interests and aptitudes; to choose a job that suits their abilities and to engage in a rewarding and sustainable livelihood.

v. Competencies relating to religion and ethics

- Develop competencies pertaining to managing environmental resources intelligently by understanding the potential of such resources.
- Develop competencies related to the usage of scientific knowledge to lead a physically and mentally healthy life.
- Develop competencies pertaining to becoming a successful individual who will contribute to the development of the nation in collaboration, engage in further studies and undertake challenging job prospects in the future.
- Develop competencies related to understanding the scientific basis of the natural phenomena and the universe.
- Use appropriate technology to maintain efficiency and effectiveness at an optimum level in utilizing energy and force.

2.0 Aims

At the end of the course student will be able to:

- 1. Understand the basic concepts of chemistry and to appreciate the unifying themes and patterns within the subject.
- 2. Develop critical and imaginative thinking in applying concepts and knowledge of chemistry to chemical phenomena.
- 3. Recognize the value of chemistry to society, and to acquire an understanding of the applications of science to technological, economic and social development.
- 4. Develop an understanding of natural resources and the issues involved in the conservation and utilization of natural resources.

List of topics and allocated number of periods

	•
10	pic

Number of Periods

33
35
37
32
37
65
18
46
45
13
44
88
40
67
00
4 4 4 8 8

Grade	Term	Competency Levels
Grade 12	First Term	From 1.1 to 3.3 (11 Competency Levels)
	Second Term	From 4.1 to 6.6 (15 Competency Levels)
	Third Term	From 7.1 to 10.3 (20 Competency Levels)
Grade 13	First Term	From 11.1 to 12.2 (7 Competency Levels)
	Second Term	From 12.3 to 13.4 (8 Competency Levels)
	Third Term	From 14.1 to 14.8 (8 Competency Levels)

Proposed term- wise breakdown of the syllabus

3.0 Syllabus - 3.1 - Grade 12

Unit 01:	Atomic	Structure

Unit 01: Atomic S	tructure	1		Periods 33
Competency	Competency level	Contents	Outcome	No. of Periods
1.0 Uses electronic arrangements and energy transactions in determining the nature of matter	1.1 Reviews the models of atomic structure.	 Properties of cathode rays and positive rays Introduction to atom and sub atomic particles Thomson, Rutherford models Atomic number and mass number Isotopes Nuclides Types of nuclides Demonstrating properties of cathode rays 	 Compares the properties of cathode rays and positive rays in brief. Describes the atom and subatomic particles using previous knowledge. Describes the Thomson's and Rutherford's models (gold leaf experiment). Reviews the atomic number and mass number. Explains isotopes using examples Classifies the nuclides according to their nature. Appreciates the attempts made by scientists in understanding nature. 	04
	1.2 Investigates the different types of electromagnetic radiation.	 Wave- particle dual nature of matter Electromagnetic radiation · Properties [speed (c), wavelength (λ), frequency (υ), energy (E)] c = (x/a) λ E = h υ, λ = h/mv 	 Describes wave-particle duality of the matter with de Broglie equation. λ = h/mν Names physical quantities that describe the properties of waves and expresses relationships among them 	06

Competency	Competency level	Contents	Outcome	Time
		• Electromagnetic spectrum	 Describes what is electro magnetic radiation. Works out simple problems using c = v λ and E = h v; λ = h/mv, E = mc² Explains quantization of energy. Identifies the different ranges in the electromagnetic spectrum and provides examples for the uses of radiations belonging to those ranges. 	
	1.3 States the evidence for electronic energy levels of atoms.	 Quantization of energy Introduction to Bohr theory and Bohr model Variation of successive ionization energies of elements Atomic spectrum of hydrogen Explanation of hydrogen spectrum using Bohr theory Existence of electrons in energy levels Introduction to atomic orbitals s, p, d and f 	 Describes the Bohr model. Presents evidences for the presence of electrons of atoms in main energy levels and sub energy levels using graphs of successive ionization energies. Explains qualitatively the series of lines in the atomic spectrum of hydrogen using the Bohr model. Reviews the models of atomic structure comparatively. 	09

Competency	Competency level	Contents	Outcome	Time
		 Brief introduction to four quantum numbers The principal quantum number (n) Azimuthal quantum number (l) The magnetic quantum number (m_i) The spin quantum number (m_s) Shapes of orbitals (s and p only) 	 Explains the existence of electrons in energy levels using quantum numbers. States that the identity of an electron in a certain atom is described by the relevant set of quantum numbers. States the information given by four quantum numbers. Illustrates the shapes of s and p orbitals. 	
	1.4 States the ground state electronic configuration of isolated (gaseous) atoms and ions.	 The maximum numbers of electrons in sub energy levels Principles and rules relevant to the filling up of electrons Hund's rule Pauli's exclusion principle Aufbau principle and its deviations in higher atomic numbers Ground state electronic configurations of isolated gaseous atoms of elements of atomic numbers from 1 to 38 and their ions Relatively stable electron configurations of sub energy levels(s², p³, p⁶, d⁵ and d¹⁰ only) 	 States the principles and rules relevant to the filling up of electrons. Writes the electronic configuration of isolated gaseous atoms and ions of elements with atomic number from 1 to 38 according to the standard form. States the deviation of Aufbau principle using the accepted electron configuration of some elements of 4 d series.(Pd as an example) Gives examples for the existence of stable electronic configurations. 	06

Competency Competency level	Contents	Outcome	Time
1.5 Analyses the electronic configuration of elements to verify their placement in the periodic table and relates atomic properties to electronic configuration.	 Building up of the periodic table Introduction to the long form of the periodic table s, p, d and f blocks Elements in groups 1- 18 Trends shown by <i>s</i> and p block elements across the period and down the group shielding effect and effective nuclear charge (Qualitative discussion only) Atomic radius; Covalent radius van der Waals' radius Ionic radius Ionization energy/ successive ionization energy Electron affinity (qualitatively only) Electron gain energy (quantitatively only) Formation of cations and anions 	 Builds up the periodic table on the basis of electronic configuration. Classifies the elements under s, p and d block in relation to the filling of the last electron to the orbital. Identifies elements belonging to groups 1,2 and 13 to 18 relevant to the valence electrons Describes trends shown by s and p block elements across the period and down the group.(atomic radius, electronegativity, electron affinity, electron gain energy(E_{eg}), first ionization energy and the ability to form cations and anions) Explains the zig zag variation of first ionization energies of elements considering the electronic configuration of elements. 	08

Unit 02: Bonding and Structure

Competency	Competency level	Contents	Outcome	No. of Periods
2.0 Relates bonding and structure to properties of matter.	2.1Analyses the primary interactions of polyatomic systems as a means of determining the structure and properties of matter.	 Formation of chemical bonds(Primary interactions) Covalent bonding Single bonds and multiple bonds Structure of molecules and ions Lewis structures (Dot-cross,dot and dot-dash structures) Rules for drawing Lewis structures. Electronegativity differences to compare bond nature (Pauling electronegativity only) Polarity and dipole moment of a bond Non-polar covalent bonding (e.g H₂, Cl₂, O₂, N₂) Polar covalent bonding (e.g. HCl, H₂O, NH₃) Dipole moment of molecules Co-ordinate (Dative covalent) bonding (e.g. H₃O⁺,NH₄⁺, NH₃. BF₃) Ionic bonding Ionic Lattice Covalent character of ionic bonds Polarizability of anions Metallic bonding 	 Overviews chemical bonds and understands the participation of valence electrons. Explains the formation of covalent bonds. Identifies the single bonds and multiple bonds. Draws Lewis structures of covalent molecules and groups of ions. Compare the nature of non- polar covalent bonds, polar covalent bonds and ionic bonds depending on the difference of electronegativity of the atoms involved in the bond. Describes the polar covalent nature of bond and molecules using the concepts of polarization and dipole moment giving suitable examples. Explains the formation of the dative-covalent bond. 	

Competency	Competency level	Contents	Outcome	No. of Periods
			 Explains the structure and properties of ionic lattice using NaCl Explains the covalent character of ionic bonds based on the polarizing power of cation and polarizability of anions. Explains the structure of the metallic bond. Identifies the covalent, ionic and metallic bonding as primary interactions. 	
	2.2 Analyses the shapes of covalent and polar covalent molecules and simple ionic groups.	 Concept of resonance Resonance structures of simple molecules and ions using Lewis dot dash structure Hybridization of the central atom (sp, sp² and sp³ only, excluding compounds containing unpaired electrons- 2nd period only) Hybridization of terminal atoms not required Nature of σ and π bonds in molecules/ions Valence shell electron pair repulsion (VSEPR) theory 	 Draws the resonance structures commonly encountered and containing up to a maximum of ten atoms, by using standard rules Describes using suitable examples how sp, sp² and sp³ hybridizations take place in the central atom. Describes the σ bond π bond as a result of linear and lateral overlapping of atomic orbitals. 	16

Competency Competency level	Contents	Outcome	Time
	 Predicting the shape of molecules/ions using VSEPR theory (central atom surrounded by a maximum of six pairs of electrons only) Geometrical shapes Linear Trigonal planar Tetrahedral Pyramidal Angular Trigonal bipyramid See- saw shape (distorted tetrahedral) T-shaped Octahedral Square pyramid Square planar Variations of electronegativities with environment (charge/hybridization/oxidation number only) <i>Displaying the shapes by using models</i> 	 Explains using resonance the reason for the equality of bond lengths in the ozone molecule and the carbonate ion. Predicts using the valence shell electron pair repulsion theory, how the pairs of electrons are oriented around the central atom (electron pair geometry) of covalent molecules and ions and thereby the shapes of the molecule/ion (molecular geometry). Compares the bond angles of different types of molecules (exact values of bond angles will not be tested). Constructs the models of molecules to illustrate the shapes. Describes the variation of electronegativities according to the charge ,hybridization and oxidation number.(qualitative only) 	

Competency Competency level	Contents	Outcome	Time
2.3 Analyses the secondaryinteractions existing in various systems as a means of determining the structure and properties of matter.	 Secondary interactions (van der Waals forces) Dipole - dipole interactions Ion - dipole interactions Hydrogen bonding Ion - induced dipole interactions Dipole - induced dipole interactions Dispersion interactions (London forces) (qualitative treatment only) Formation of simple molecular lattices due to secondary interactions. (I₂ and H₂O) 	 Describes the types of secondary interactions using suitable examples. Highlights the relationship between the nature of secondary interactions present in a substance and its physical properties. Identifies the importance of secondary interactions and their effect on the state. Explains the formation of molecular lattices using given examples. Predicts the physical properties of lattice structures. 	09

Unit 03: Chemical calculations

Competency	Competency level	Contents	Outcome	No. of Periods
3.0 Works out chemical calculations accurately.	3.1 Determines chemical formulae Using physical quantities related to atoms and molecules and works out relevant calculations using relevant constants.	 The concept of oxidation number Chemical formulae and IUPAC nomenclature of simple compounds Common names of simple compounds Simple calculation based on moles molar mass and Avogadro constant Empirical formula and molecular formula The parameters of composition Mass fraction Weight percentage (w/w%) Parts per million, mg kg⁻¹ Volume fraction Volume percentage (v/v%) Parts per million (for gases), µLL¹ Mole fraction Weight/volume ppm as mg dm⁻³ for dilute aqueous solutions Concentration (molarity), mol/volume mol dm⁻³, mmol m⁻³ 	 Finds the oxidation number of the component atoms of a given species Writes chemical formulae and names them using IUPAC rules. States the common names of the chemical compounds used frequently. States the value of Avogadro constant (L). Carries out calculations related to moles and Avogadro constant Determines the empirical formula when the percentage composition is known and the molecular formula when the empirical formula and the molar mass are known. Reviews the parameters of composition (mass fraction, volume fraction, mole fraction, concentration) 	13

Competency	Competency level	Contents	Outcome	Time
			 Solves problems related to mass fraction, volume fraction and mole fraction. Defines concentration as the composition expressed in terms of moles of the solute per volume. Calculates and expresses the compositions in terms of mass/volume, amount/volume (concentration) Handles glassware such as pipette, burette, beakers, measuring cylinders and four beam balance in the laboratory. 	
	3.2Uses different kind of methods to balance the equations.	 Balancing chemical equations Inspection method Redox method Using oxidation number Using half ionic equations Balancing simple nuclear reactions. 	 Examines the balance in a chemical equation considering the mass and charge conservation. Balances equations by using inspection method and the redox method. Balances simple nuclear reactions 	10

Competency Competency level	Contents	Outcome	Time
3.3Carries out calculations associatedWith stoichiometry and reaction equations.	 Calculations involving in various types of chemical reactions Calculation involving acid-base and redox reactions. Calculation involving precipitation (gravimetry). Preparation of solution <i>Preparation of standard solution of Na₂CO₃</i> 	 Calculates quantities in chemical reactions using stoichiometry. Explains methods of preparation of solutions and dilution. Prepares solution of Na₂CO₃. 	14

Unit 4: State of matter; Gaseous State

Competency	Competency level	Contents	Outcome	No. of Periods
 4.0 Investigates the behavior of the gaseous state of matter. 4.1 Uses organization of particles in three principal states of matter to explain their typical characteristics. 	 Principal states of matter Solid Liquid Gas Arrangement of particles and their movements Qualitative comparison of properties Volume Density Shape/ gravity Compressibility 	 Investigates the organization of particles in the principal states solid, liquid and gas. Compares the macroscopic properties such as volume, density, shape(under the influence of gravity) and compressibility of solids, liquids and gases in relation to the arrangement of particles and their movement. 	02	
	4.2 Uses the model of ideal gas as a means of describing the behavioral patterns of real gases.	 Introduction to an ideal gas Ideal gas equation and its derivatives (P,V, T and n as variables) Boyle law, Charles law and Avogadro law Consistency of Boyle's law, Charles's law and Avagadro law with the ideal gas equation Molar volume <i>Experimental determination of molar volume of a gas</i> <i>Experimental determination of relative atomic mass of magnesium using molar volume of hydrogen gas</i> 	 Defines an ideal gas . Writes the ideal gas equation and its derivatives with their terms. Defines the term of a gas equation States Boyle, Charles and Avogadro laws and show the consistency of the ideal gas equation. Defines the molar volume of a gas. 	10

Competency	Competency level	Contents	Outcome	Time
			 Solves problems related to the ideal gas equation and its derivatives. Determines experimentally the molar volume of oxygen. Determines the relative atomic mass of magnesium experimentally. 	
	4.3 Uses molecular kinetic theory of gases as a means of explaining the behavior of real gases.	 Molecular kinetic theory of gases Pressure of a gas Expressions for mean speed, mean square speed and root mean square speed Kinetic molecular equation (Derivation is not necessary.) 	 States the assumptions of the molecular kinetic theory of gases. Describe the factors affecting the pressure of a gas. Writes expressions for mean speed, mean square speed and root mean square speed. States the kinetic molecular equation and describes its terms. Derives C² = 3RT/M Describes the information given by Maxwell - Boltzmann curves for gases. 	08
	4.4 Uses Dalton law of partial pressures to explain the behavior of a gaseous mixture.	 Total pressure and partial pressure Dalton law of partial pressures 	• Describes the information given by Maxwell - Boltzmann curves for gases.	

Competency	Competency level	Contents	Outcome	Time
			 Explains the term partial pressure and states Dalton law of partial pressures. Derives Dalton law of partial pressures from the ideal gas equation. Solves problems related to Dalton law of partial pressures. 	06
	4.5 Analyses amendments to the ideal gas equation for applying it to real gases.	 Compressibility factor (only to check the ideality) Deviation of real gases from ideal gas law Molecular interactions Volume of molecules Corrections to the ideal gas equation van der Waals equation (Qualitative description only) Critical temperature 	 Defines the compressibility factor and graphically presents how this value varies with pressure in real and ideal gases. Describes the reasons for the deviation of real gases from the behavior of ideal gases by citing assumptions of the molecular kinetic theory. Presents van der Waals equation as an equation constructed to explain the deviation of real gases from the ideal behavior. Describes the critical temperature. Values the idea that scientific concepts are not static but subject to continuous improvements based on facts. 	06

Unit 05: Energetics

Competency	Competency level	Contents	Outcome	No. of Periods
5.0 Predicts the stability of chemical systems and feasibility of conversions by investigating associated changes in enthalpy and entropy.	5.1 Explores concepts related to enthalpy.	 Extensive and intensive properties System, surroundings and boundary Standard states of pure substances State of a system and state functions Heat and enthalpy Integral enthalpy changes associated with a process,	 Describes the extensive and intensive properties. Defines the terms system, surrounding, boundary, closed system, open system and isolated system. States the standard states of pure substances and solutions. Defines the terms state of a system and a state function. Describes enthalpy as a function of state or thermodynamic property but not heat. States that Integral value for Δ<i>H</i> reported in kJ or per unit extent of reaction(kJ mol⁻¹). Calculates the enthalpy changes associated with process using. Δ<i>H</i>=<i>H</i>(<i>final</i>) -<i>H</i>(<i>initial</i>) 	05

Competency Competency level	Contents	Outcome	Time
5.2 Defines the enthalpy changes and calculates enthalpy changes associated with a given conversion.	 Calculation of Enthalpy changes and enthalpy of a reaction, using Q = mc∆T Endothermic (energy absorbing) and exothermic (energy releasing) processes Enthalpy changes and standard enthalpy changes Enthalpy of formation Enthalpy of combustion Enthalpy of bond dissociation Mean bond dissociation enthalpies Enthalpy of neutralization Enthalpy of solution Enthalpy level diagrams and enthalpy cycles of different processes Difference between an Enthalpy level diagram and an Enthalpy cycle Hess law (as an application of state function) Calculations of enthalpy changes associated with different processes using different methods and applying Hess's law. 	 Calculates enthalpy changes using Q = mc∆T Explains the endothermic and exothermic reactions using energy diagram. Defines enthalpy changes and standard enthalpy changes given in the syllabus. States Hess Law Calculates enthalpy changes using enthalpy diagrams thermochemical or thermodynamic cycles Only using formation enthalpies as well as only using bond dissociation enthalpies separately. Determines experimentally the enthalpy of neutralization of acids and bases Tests the validity of Hess law by preparing 250cm³ 1 moldm⁻³ NaCl using two methods. 	20

Competency	Competency level	Contents	Outcome	Time
		 Experimental determination of the enthalpy of acid/base neutralization (NaOH and HCl, KOH and HNO₃, NaOH and CH₃COOH, NH₄OH and HCl) using equivalent quantities Validation of Hess law through experiments 		
	5.3 Calculates the lattice enthalpy or enthalpy of formation of an ionic compound using Born-Haber cycles.	 Born - Haber cycle and calculating lattice energy of ionic compounds Enthalpy of sublimation Enthalpy of vapourisation Enthalpy of fusion Enthalpy of atomization Enthalpy of ionization Enthalpy of electron gain Lattice enthalpy 	 Defines the enthalpy changes used to develop the Born Haber cycle. Develops the Born – Haber cycle related to lattice enthalpy. Calculates the standard lattice enthalpy using the Born – Haber cycle. Explains the variation of electron gain enthalpies of elements of second and third periods. 	07
	5.4 Predicts the spontaneity of chemical reactions.	 Entropy (S) and entropy change(ΔS) Gibbs energy (G) and Gibbs energy change (ΔG) Relationship between ΔG, ΔH and ΔS ΔG = ΔH -TΔS Standard Gibbs energy change G⁰ and standard entropy change S⁰ 	 Explains the terms entropy (S) and entropy changes(ΔS) Explains Gibbs energy (G) and Gibbs energy change (ΔG) States that S and G are state functions. Calculates ΔS and ΔG using 	05

Competency C	Competency level	Contents	Outcome	Time
		 Relationship between G^θ, H^θ and S^θ ΔG^θ = ΔH^θ -TΔS^θ Determination of spontaneity of a reaction using ΔG ΔG = 0, equilibrium ΔG< 0, spontaneous ΔG> 0, non spontaneous 	 ΔS = S_(products) - S_(reactants) ΔG = G_(products) - G_(reactants) Energy cycle Explains the terms ΔG⁰ and ΔS⁰ States the relationship among ΔG, ΔH and ΔS. States the relationship among G⁰, H⁰ and S⁰. Predicts the spontaneity of a reaction or an event occurring under constant pressure and temperature using ΔG. States that ΔG and ΔS are reported as a integral quantity per extent of a reaction. (kJ mol⁻¹) ΔG (kJ mol⁻¹), ΔS (kJK⁻¹ mol⁻¹) or ΔG (kJ , ΔS (JK⁻¹) Calculates the problems based on standard values, ΔG⁰, ΔH⁰ and ΔS⁰. 	

Unit 06: Chemistry of *s*, *p* and *d* block elements

Competency	Competency level	Contents	Outcome	No. of Periods
60 Investigates the properties of elements and compounds of S, p and d blocks	6.1 Investigates the properties of elements in the <i>s</i> block.	 Occurrence of <i>s</i> block elements (only Na, K, Mg and Ca) Reactions of selected <i>s</i> block elements with water with air/ O₂ with N₂ with H₂ with acids <i>Comparison of the reactions of metals with air, water and acids</i> <i>Identification of elements of compounds by the flame test (Li, Na, K, Ca, Ba, Sr)</i> 	 Describes the occurrence of <i>s</i> block elements and compounds. Describes the nature of the reactions by means of balanced chemical equations of elements of the first and second groups with air/O₂, water, acids, N₂ and H₂. Observes reactions of Na and Mg with air, oxygen, water, acids taking them as representative elements. Explains that s block elements can function as reducing agents by forming stable cations with noble gas configuration by giving up outermost shell electrons (oxidation) which are loosely bonded to the nucleus. Identifies the <i>s</i> elements using flame test. State the results of flame test using electron transitions (emission spectrum). 	10

Competency Competency level	Contents	Outcome	Time
6.2 Investigates the properties of elements and compounds of p block.	 Occurrence of p block elements (Only C, N, O) p block elements (Groups 13- 18) Properties of selected elements and their compounds Aluminium Aluminium oxide Amphoteric properties of aluminium and aluminium oxide Electron deficiency of aluminium chloride Carbon Allotropes of carbon Oxides of carbon Oxides of carbon Nitrogen Oxidation numbers of nitrogen in nitrogen containing compounds Acyclic oxoacids and oxides Reactions of HNO₃ with metals and nonmetals (Mg, Cu, C, S) Ammonia Oxidizing and reducing properties (with Na, Mg,Cl₂, CuO) Ammonium salts 	 Describes the occurrence of p block elements and compounds compared to s block. Describes reactions of aluminium with acids and strong bases. Describes the reactions of aluminium and aluminium oxide to show their amphoteric nature. Describes electron deficiency of AlCl₃ and the formation of Al₂Cl₆. Explains the structure and properties of graphite and diamond. Present structures of CO and CO₂ and their properties. Presents structure of H₂CO₃ and explains its acidic property. Writes examples for different oxidation numbers of nitrogen. Present structures of oxides and oxoacids of nitrogen. Writes balanced equations for reaction of HNO₃ with specified metals and nonmetals. 	20

Competency Competency level	Contents	Outcome	Time
	 Thermal decomposition of ammonium salts.(halides, NO₃⁻,NO₂⁻,CO₃⁻²⁻,SO₄⁻²⁻,Cr₂O₇⁻²⁻) <i>Identification of ammonia gas and ammonium salts (with litmus, HCl, Nessler's reagent)</i> Oxygen and sulphur Allotropes Acyclic oxoacids(H₂SO₄, H₂SO₃, H₂S₂O₃) Reactions of H₂SO₄(with metals, C and S) Compounds containing oxygen and sulphur Amphiprotic property of water Oxidizing and reducing properties of H₂O₂, H₂S, SO₂ Halogens Reactions of chlorine with copper , iron and ammonia Displacement reactions of halogens with other halide ions Disproportionation of chlorate(I) ion Oxoacids of chlorine 	 Writes reactions of ammonia as an oxidizing agent and a reducing agent Writes balanced equations for thermal decomposition of ammonium salts. Identifies ammonia gas and ammonium ion experimentally. Presents information about allotropic forms of oxygen and sulphur. Presents structure of oxoacids of sulphur. Writes reactions to explain the oxidizing ability of conc. H₂SO₄ with metals, C and S. Writes oxidizing and reducing reactions of H₂O₂, H₂S and SO₂. Describes physical states and colours of halogens. Writes balanced equations for the reactions of chlorine with Cu ,Fe and NH₃. Writes balanced equations for displacement reactions of halogens. 	

Competency Compe	tency level Contents	Outcome	Time
	 Halides Acidity of hydrogen halides in aqueo media Noble gases Fluorides of xenon <i>Identification of anions</i> <i>halides</i>, SO₄², SO₃², S₂O₃², S², Con NO₃; NO₂⁻ (except F-) Showing the presence of nitrogen in experiment Identification of halides Standardization of solution of thiosuly ions using KIO₃ and KI 	 Describes the disproportionation of chlorine and chlorate(I) ions with balanced eqations. Presents structures of the oxoacids of chlorine of different oxidation states. Compares the acidity and oxidizing ability of oxoacids of chlorine using oxidation states. Describes giving suitable examples, 	

Competency Competency level	Contents	Outcome	Time
6.3Investigates the properties of compounds and their trends associated with <i>s</i> and <i>p</i> block elements.	 carbonates ,bicarbonates, nitrites, nitrates, halides, sulphides, sulphites, chromates, phosphates, oxalates and sulphates of s block elements Comparing thermal stability of nitrates, bicarbonates, carbonates and hydroxides of s block elements Trends shown by compounds of s and p block elements across the period and down the group. Acid/base/ amphoteric nature of oxides and hydroxides. Reactions of hydrides and halides with water across the third period Reactions of halides with water down the 	 Compares the solubility of the salts of <i>s</i> block elements in water. Compares the thermal stability of the nitrates, carbonates and bicarbonates of <i>s</i> block elements. Explains how the acidic/ basic/ amphoteric nature of the oxides and hydroxides of <i>s</i> and p blocks vary along the 3rd period. Writes balanced chemical equations for reactions of hydrides and halides with water to understand the trends of hydrolysis. Compares the solubility of the salts of <i>s</i> block experimentally. Compares the thermal stability of carbonates and nitrates experimentally. Compares the hydrolysing ability of halides of group 15 elements. 	10

Competency Competency level	Contents	Outcome	Time
6.4Investigates properties of elements of d block and their variation across the period.	 Occurrence and uses of some <i>d</i> block elements and their compounds (Cu, Fe and Ti) Comparison of the following properties of d block elements with s and p block elements Electron configurations and variable oxidation states Electronegativity Metallic properties Catalytic action Ability to form coloured compounds <i>Identification of the colours of complex ions in aqueous medium</i> 	 Describes the occurrence and uses of some d block elements and their compounds. States the variable oxidation states shown by the d block elements of the fourth period using electron configuration. Compares the ability to form variable oxidation states of d block elements with that of s and p block elements. Compares electronegativity of d block elements. Compares the metallic properties of d block elements. Compares the catalytic property of a block elements. Describes the catalytic property of d block elements. Describes the ability of d block elements. Identifies the colours of d block complex ions experimentally. 	05

Competency	Competency level	Contents	Outcome	Time
	6.5 Investigates properties of compounds of the d block.	 Acidic/basic/amphoteric nature of oxides of chromium and manganese Oxoanions of chromium and manganese CrO₄²⁻, Cr₂O₇²⁻ and MnO₄⁻ ions as oxidizing agents Determination of the concentration of a ferrous ion solution using acidified potassium permanganate Determination of the concentration of K₂C₂O₄ solution using acidified KMnO₄ solution. 	 Expresses acidic/basic/amphoteric nature of oxides of chromium and manganese. Gives examples for reactions in which oxoanions of chromium and manganese act as oxidizing agents. Writes balanced equations for oxidation and reduction reactions of oxoanions of Cr and Mn. Determines the concentration of Fe²⁺ in a given sample using acidified KMnO₄ experimentally. Determines the concentration of K₂C₂O₄ solution using acidified KMnO₄ experimentally. 	10
	6.6 Investigates properties of Complex compounds of the d block	 Complex compounds of ions of Cr, Mn, Fe, Co, Ni and Cu formed with the following mono-dentate ligands and their colours H₂O, Cl⁻ Complex compounds of ions of Co, Ni, Cu formed with NH₃ Namesof above complex using IUPAC rules 	 Names complexes containing only one type of ligand using IUPAC rules. Writes reaction of d block cations with NaOH and NH₃ (aq) 	10

Competency Competency level	Contents	Outcome	Time
	 Reactions of cations (Cr³⁺, Mn²⁺, Fe²⁺, Fe³⁺ Co²⁺,Ni²⁺, Cu²⁺, Zn²⁺) with NaOH and NH₃ (aq)(ammine complexes of Mn²⁺, Fe³⁺ and Cr³⁺ are not required) Factors affecting the colour of complex compounds Central metal ion Oxidation state Nature of the ligand Observing the colours of the complexes of Cu(II), Ni(II) and Co(II) with hydrochloric acid and ammonia Observing the different colours of of oxidation states (+2,+4,+6,+7) of manganese containing compounds using redox reactions Identification of Ni²⁺, Fe²⁺, Fe³⁺, Cu²⁺ and Cr³⁺ ions 	 Shows how the central atom, the oxidation state and the ligand system of a complex ion affect the colour of a complex compound by giving suitable examples. Observes the colours of copper(II), cobalt(II) and nickel(II) salts with hydrochloric acid and ammonia. Observes the colours relevant to the oxidation states +2, +4, +6 and +7 of manganese using redox reactions. Identifies Ni²⁺, Fe²⁺, Fe³⁺, Cu²⁺ and Cr³⁺ ions in aqueous solution experimentally. 	

Unit 07: Basic concepts of organic chemistry

Competency	Competency level	Contents	Outcome	No. of Periods
7.0 Investigates the variety of organic compounds.	7.1 Investigates the importance of organic chemistry as a special field of chemistry.	 Introduction to organic chemistry Reasons for the presence of a large number of organic compounds Importance of organic compounds in day to day life 	 States that there is a large number of natural and synthetic compounds containing carbon as the main constituent element. Explains giving the relevant facts the ability of carbon to form a large number of compounds. Shows the importance of organic chemistry in daily life by giving examples from various fields. 	
	7.2 Investigates the variety of organic compounds in terms of the functional groups.	 Variety of organic compounds Aliphatic (acyclic) hydrocarbons and aromatic hydrocarbons (benzene and substituted benzenes only) Alkyl halides and aryl halides Alcohols and phenols Ethers Aldehydes and ketones Carboxylic acids Acid chlorides 	 Identifies the names and symbols of functional groups that are included in the syllabus. Identifies the variety of organic compounds in terms of the functional groups present. Names the homologous series of compounds containing each of the functional groups and presents examples. 	03

Competency	Competency level	Contents	Outcome	Time
		 Esters Amides Aliphatic amines and aryl amines Amino acids 		
	7.3 Names simple aliphatic organic compounds.	 Trivial names of common organic compounds Rules of IUPAC nomenclature applicable to compounds within the following structural limits The number of carbon atoms in the main carbon chain should not exceed six. Only saturated, unbranched and unsubstituted side chains of C should be connected to the main chain. The total number of C-C double bonds and triple bonds of an unsaturated compound should not exceed one. The C-C double bond or triple bond is not considered a substituent but is a part of the main chain. The number of substituent groups on the main carbon chain should not exceed two. 	 States the trivial names of the common organic compounds and recognizes the need for a standard nomenclature. Names the given organic compounds which are structurally within the limit stated in the syllabus, using the IUPAC rules. Draws the structural formula of a compound when the IUPAC name is stated. 	06

Competency	Competency level	Contents	Outcome	Time
		 Only the following groups should be present as substituent groupsF, -Cl, -Br, -I, -CH₃, -CH₂CH₃, -OH, -NH₂, -NO₂, -CN,-CHO, >C=O Only the following groups should be present as the principal functional groupOH, -CHO, >C=O, -COOH, -COX, -COOR, -NH₂, -CONH₂ The principal functional group should not occur more than once(nomenclature of aromatic compounds will not be tested) 		
	7.4 Investigates the different possible arrangements of atoms in molecules having the same molecular formula.	 Isomerism Constitutional (structural) isomers Chain isomers Position isomers Functional group isomers Stereoisomers Diastereomers (illustrated by geometrical isomers only) Enantiomers (optical isomers with one chiral centre only) 	 Draws all the possible structural formulae for a given molecular formula. Classifies the given structures for given structures for given molecular formulae as chain , position, and functional group isomers. States the requirements to be satisfied to exhibit geometrical and optical isomerism. select the geometrical and optical isomers drawn for the molecular formula which has been given. 	06

Unit 08: Hydrocarbons and halohydrocarbons

Competency	Competency level	Contents	Outcome	No. of Periods
8.0 Investigates the relationship between structure and properties of hydrocarbons and halohydrocarbons.	8.1 Investigates the structure,physical properties and nature of bonds of aliphatic hydrocarbons.(Only acyclic aliphatic compounds are considered).	 Types of hydrocarbons Alkanes Alkenes Alkynes Homologous series Physical properties Intermolecular forces Melting points and boiling points Hybridization of carbon atoms in organic compounds (sp³, sp² and sp) Geometrical shapes of alkanes, alkenes and alkynes 	 Describes the nature of the bonds in alkanes, alkenes, and alkynes using suitable examples. Explains the variation of physical properties along the homologous series of alkanes, alkenes and alkynes. Relates the geometrical shapes of the simple alkanes, alkenes and alkynes to the hybridization of carbon atoms. 	05
	8.2 Investigates and compares the chemical reactions of alkanes, alkenes and alkynes in terms of their structures.	 Reactions of alkanes Lack of reactivity of alkanes towards common reagents Reactions with free radicals Substitution reactions with chlorine Mechanism of chlorination of methane Homolytic cleavage of bonds Free radicals as reaction intermediates Reactions of alkenes Electrophilic additions as characteristic reactions of alkenes 	 Relates the characteristic reactions of alkanes, alkenes and alkynes to their structures. Explains the reaction mechanisms of chlorination of methane and the addition of bromine and hydrogen halides to ethene. Identifies the alkenes and alkynes by chemical reactions. Prepares ethene and ethyne and observes their reactions. 	14

Competency	Competency level	Contents	Outcome	Time
		Addition of hydrogen halides to simple		
		alkenes and its mechanism		
		• Carbocations as reactive intermediates		
		• Relative stability of primary, secondary		
		and tertiary carbocations		
		• Anomalous behaviour of HBr in the		
		presence of peroxides		
		(Mechanism is not necessary.)		
		• Addition of bromine to simple alkenes		
		• Mechanism of addition of bromine to		
		propene		
		• Addition of sulphuric acid and the		
		hydrolysis of the addition product		
		Catalytic addition of hydrogen		
		Reactions of alkynes		
		• Electrophilic additions as characteristic		
		reactions of alkynes		
		Addition of bromine		
		Addition of hydrogen halide		
		• Addition of water in the presence of		
		mercuric ions and sulphuric acid		
		• Catalytic addition of hydrogen including		
		partial hydrogenation		
		• Acidic nature of alkynes with terminal		
		hydrogen explained by the nature of bonding		
		• Reactions of alkynes with terminal		
		hydrogen		

Competency	Competency level	Contents	Outcome	Time
		 Na or NaNH₂ Ammonical CuCl Ammonical AgNO₃ Observing reactions of alkenes and alkynes with alkaline KMnO₄ and bromine water. Observing reactions of terminal alkynes with ammonical silver nitrate and ammonical cuprous chloride. 		
	8.3 Investigates the nature of bonding in benzene.	 Structure of benzene Hybridization of carbon atoms Delocalization of electrons Concept of resonance Stability of benzene 	 Gives reasons why the structure for benzene first presented by Kekule does not explain all the properties of benzene. Explains the structure and the stability of benzene. Presents evidences in support of the true structure of benzene. 	03
	8.4 Analyses the stability of benzene in terms of its characteristic reactions.	 Preference for substitution reactions over addition reactions Electrophilic substitution reactions as characteristic reactions of benzene Nitration and its mechanism Alkylation and its mechanism Acylation and its mechanism Halogenation in the presence of FeX₃ and its mechanism (X = Cl, Br) 	 Shows using suitable examples the tendency of benzene to undergo substitution reactions rather than addition reactions. Describes the electrophilic substitution reactions as characteristic reactions of benzene using the mechanisms of nitration, alkylation, acylation and halogenation. 	07

Competency	Competency level	Contents	Outcome	Time
		 Resistance to oxidation Oxidation of alkyl benzene (except tertiary) and acylbenzene using H⁺/ KMnO₄ and H⁺/K₂Cr₂O₇ Difficulty of hydrogenation compared to alkenes Catalytic hydrogenation of benzene 	 Compares the reactions of benzene with those of alkanes alkenes, and alkynes. Describes the increase in the tendency to undergo oxidation of alkyl groups and acyl groups when they are attached to benzene. 	
	8.5 Recognizes the directing abilityof substituent groups of monosubstituted benzene.	 Ortho, para directing groups -OH, -NH₂, -NHR, -R, -Cl, -Br, -OCH₃ Meta directing groups -COOH, -CHO, -COR, -NO₂ (explanation is not necessary) 	 Identifies the substituent groups of mono substituted benzene as ortho, para or meta directing groups. States the position to which a second substituent group attaches in a mono- substituted benzene on the basis of the directing property of the first substitued group. 	05
	8.6 Investigates the structure and polar nature of C-X bond and reactions of alkyl halides.	 Classification Primary, secondary, tertiary Polar nature of the C-X bond (X=F, Cl, Br,I) Physical properties (melting point, boiling point, solubility) Nucleophilic substitution reactions of alkyl halides Elimination as a competing reaction Hydroxide ions, cyanide ion, acetylide (alkynide) ion, alkoxide ion as nucleophiles 	 Classifies alkyl halides as primary, secondary and tertiary. Relates the tendency of alkyl halides to undergo nucleophilic substitution reactions with the polar nature of the C – X bond. Describes the preparation and the properties of Grignard reagent. 	09

Competency	Competency level	Contents	Outcome	Time
		 Comparison of non-reactivity of aryl halides and vinyl halides with alkyl halides. Reaction of alkyl halides with magnesium (Preparation of Grignard reagent) The need for anhydrous conditions Nature of the metal-carbon bond Reactions of Grignard reagent with proton donors, Water Acids Alcohols and phenols Amines Alkynes with acidic 'H' atoms 	• Explains the non reactivity of aryl halides and vinyl halides (halogens attached to sp ² carbon atoms) towards nucleophilic substitution.	
	8.7Analyses the nucleophilic substitution reactions of alkylhalides in terms of the timing of bond making and bond breaking steps.	 One step reaction (Bond making and bond breaking steps take place simultaneously. No reaction intermediates are formed.) Two step reaction (Bond breaking step takes place first. A carbocation is formed as a reaction intermediate. In the second step nucleophile forms a bond with the carbocation) 	 Recognizes that there are two possible pathways for the nucleopilic substitution reactions of alkyl halides. Describes the nucleophlic substitution reaction of alkyl halides as a one step reaction when bond breaking and bond making take place simultaneously. Describes the nucleophilic substitution reaction of alkyl halides as a two step reaction when the formation of the new bond takes place after the breaking of the bond. 	03

Unit 09: Oxygen containing organic compounds

Competency	Competency level	Contents	Outcome	No. of Periods
9.0 Investigates the relationship between the structure and properties of oxygen containing organic compounds.	9.1 Investigates the structure,polar nature of carbon-oxygen bond and oxygen-hydrogen bond and reactions of alcohols.	 Classification of alcohols Primary, secondary and tertiary Physical properties Boiling point Solubility in water and common organic solvents Reactions involving cleavage of O-H bond Reaction with sodium(Acidic nature of hydrogen bonded to oxygen) Reaction with carboxylic acid(Acylation of alcohols to give esters) Nucleophilic substitution reactions involving cleavage of C-O bond Reaction with HBr and HI PCl₃/ PBr₃ PCl₅ Reactions with ZnCl₂ and conc. HCl acid (Lucas test)(Explained by the relative stability of the carbocation formed by the cleavage of C-O bond) Reaction of benzyl alcohol is not necessary 	 Classifies alcohols as primary, secondary and tertiary. Describes the polar nature of the O- H bond and C- O bond. Relates the physical properties of alcohols with their ability to form hydrogen bonds. Relate the breaking of O-H and C- O bonds and the elimination and oxidation reactions of alcohols with the structure. Distinguishes primary, secondary and tertiary alcohols by Lucas test. Tests the properties of alcohols and records observation. 	06

Competency	Competency level	Contents	Outcome	Time
		 Elimination reaction with concentrated sulphuric acid or Al₂O₃ (dehydration to give alkenes) Oxidation with H⁺/KMnO₄ H⁺/K₂Cr₂O₇ Pyridiniumchlorochromate (primary alcohols to aldehydes and secondary alcohols to ketones) <i>Testing properties of alcohols</i> 		
	9.2Analyses the reactions of phenol in terms of its carbon-oxygenbond and oxygen- hydrogenbond	 Structure of hydroxy benzene, the simplest phenol Higher acidity of phenols compared to alcohols Reactions of phenols with sodium metal sodium hydroxide Non reactivity of phenols under conditions 	 Explains why phenols are more acidic than alcohols. Explains why phenols do not undergo nucleophilic substitution reactions undergone by alcohols. States the reactions of phenols with sodium metal and sodium hydroxide. Identifies the properties of phenol by simple tests. 	06

Competency	Competency level	Contents	Outcome	Time
	9.3 Investigates the effect of the -OH group on the reactivity of the benzene ring in phenol	Electrophilic substitution reactionsBrominationNitration	 States that in the substitution reactions of phenol, the substituent gets attached to the ortho (2, 6) and para (4) positions relative to the –OH group. Explains why the aromatic ring of phenol is more reactive towards electrophiles than benzene itself. 	03
	9.4 Investigates the polar nature and unsaturated nature of > C=O bond in aldehydes and ketones as exemplified by their reactions.	 Nucleophilic addition reactions as characteristic reactions of aldehydes and ketones Reaction with HCN and its mechanism Reaction with Grignard reagent and its mechanism Reaction with 2,4-dinitrophenyl hydrazine (2,4- DNP or Brady's reagent) (Explained as a nucleophilic addition followed by dehydration/ Detailed mechanism is not necessary.) Self-condensation reactions of aldehydes and ketones in the presence of sodium hydroxide 	 Explains the unsaturated nature of the carbonyl group. Explains nucleopihlic addition reactions as the characteristic reactions of aldehydes. Presents the mechanisms of nucleophilic addition reactions with Grignard reagent and HCN. Uses the property of aldehydes undergoing oxidation very easily relative to the ketones to distinguish between them. 	15

Competency	Competency level	Contents	Outcome	Time
		 Reduction of aldehydes and ketones by NaBH₄ or LiAlH₄ followed by hydrolysis (Detailed mechanism and intermediate products are not necessary) Reaction with Zn(Hg)/concentrated HCl (Clemmenson reduction of carbonyl group to methylene group) Oxidation of aldehydes By ammonical silver nitrate (Tollens' reagent) By Fehling's solution By H⁺/KMnO₄ By H⁺/K₂Cr₂O₇ (Compare with the non reactivity of ketones) <i>Tests for aldehydes and ketones</i> 	 Shows the reactivity of carbonyl compounds containing α - H using suitable examples. Presents the condensation reactions of aldehydes and ketones in the presence of sodium hydroxide. Identifies carbonyl group by relevant tests. Distinguishes aldehydes from ketones by relevant tests. 	
	9.5Compares the structure and properties of carboxylic acids with the other oxygen containing organic compounds.	 Physical properties -Importance of H-bonding Melting points/ Boiling points Solubility in water and common organic solvents (Presence of dimeric structures) Comparison of the reactivity pattern of a -COOH group with >C=O group in aldehydes and ketones and -OH group in alcohols and phenols 	 Relates the physical properties of carboxylic acids to their structure. Compares the reactivity pattern of the carboxyl (-COOH) group with that of the carbonyl group in carbonyl compounds and the -OH group in phenols and alcohols. 	10

Competency	Competency level	Contents	Outcome	Time
		 Reaction involving cleavage of the O - H bond Acidic nature of H bonded to O in carboxylic acids Comparison of acidic properties of carboxylic acids with that of alcohols and phenol, based on the relative stability of their conjugate base Reactions with Na NaOH NaHCO₃ /Na₂CO₃ Reactions involving cleavage of the C - O bond Reaction with PCl₃ or PCl₅ Reaction with alcohol Reduction of carboxylic acids with LiAlH₄ 	 Compares the acidic properties of carboxylic acids, alcohols and phenol using the reactions with Na, NaOH, Na₂CO₃ and NaHCO₃. Presents examples for reactions involving the cleavage of the C-O bond. Tests the properties and reactions of carboxylic acids. 	
	9.6 Investigates the characteristic reactions of acid derivatives.	 Acid chloride Reaction with aqueous sodium hydroxide and its mechanism Reactions with 	• States that the characteristic reactions of the acid derivatives are nucleophilic substitution reactions.	05

Competency Competency level	Contents	Outcome	Time
	 Water Ammonia Primary amines Alcohols Phenol Esters Reaction with dilute mineral acids Reaction with aqueous sodium hydroxide Reaction with Grignard reagent Reduction by LiAlH₄ Amides Reaction with aqueous sodium hydroxide Reduction with LiAlH₄ 	 Writes examples for the characteristic reactions of acid chlorides. Writes examples for the characteristic reactions of esters. Writes examples for the characteristic reactions of amides. Recognizes that the first step in all the reactions of acid derivatives is an attack by a nucleophile on the carbon atom of the carbonyl group. Writes the mechanism for the reaction between acid chloride and sodium hydroxide. 	

3.2 Grade 13

Unit 10: Nitrogen containing organic compounds

Competency	Competency level	Contents	Outcome	No. of Periods
10. Investigates the relationship between structure and properties of nitrogen containing organic compounds.	10.1 Analyses amines and aniline in terms of their characteristic reactions and properties.	 Types of amines Aliphatic and aromatic amines Primary amines Secondary amines Tertiary amines Aniline as an aromatic amine Reaction of aniline with bromine Reactions of primary amines (only) with alkyl halides with aldehydes and ketones with acid chlorides with nitrous acid 	 Identifies the types of alkyl amines. Studies the reactions of primary amines. 	06
	10.2 Compares and contrasts the basicity of amines with other organic compounds.	 Basicity of amines compared to alcohols Comparison of the basicity of primary aliphatic amines with that of aniline Basicity of amines compared to amides 	 Compares the basicity of aliphatic amines with that of aniline. Compares the basicity of amides with that of amines. 	03

Competency Competency le	vel Contents	Outcome	Time
10.3 Investigates t reactions of diazonium salts.	replaced by an atom or another group	 Describes the preparation of diazoniaum salt. Writes down the reactions of diazonium salts with water, H₃PO₂, CuCl, CuCN, CuBr and KI. Writes down examples for the reactions in which the diazonium ion behaves as an electrophile. Tests for aniline using diazonium salt and records observations. 	04

Unit 11 : Chemical kinetics

Competency	Competency level	Contents	Outcome	No. of Periods
11.0 Uses the principles of chemical kinetics in determining the rate of a chemical reaction and in controlling the rate of reactions	11.1 Introduces reaction rate and determines the factors affecting the rate of chemical reactions	 Rate of a reaction Rate in terms of concentration aA + bB → cC + dD Rate of reaction with respect to reactant A -(ΔC_A/Δt) Rate of reaction with respect to product =(ΔC_D/Δt) Factors affecting the rate of chemical reactions Temperature Concentration /pressure Physical nature (surface area of reactants) Catalysts 	 Generalizes a chemical reaction as aA + bB → cC + dD Provides examples for chemical reactions taking place at various rates and compares the rates of different reactions. States that the change in the concentration of a substance is the fundamental factor in measuring the rate of a reaction. Defines rate of reaction as rate with respect to the change of concentration of the reactant A $-\left(\frac{\Delta C_A}{\Delta t}\right)$ or rate with respect to the change of the reaction. Expresses that in a given reaction, the rate of formation of each product are not equal. 	

Competency	Competency level	Contents	Outcome	Time
			• States that the rate of removal of a reactant or formation of a product depends on the stoichiometric coefficients of the respective substances.	
			• States accordingly that the	
			generalized rate of a reaction $= -\frac{1}{a} \left(\frac{\Delta C_A}{\Delta t} \right) = \frac{1}{d} \left(\frac{\Delta C_D}{\Delta t} \right).$ • States that for any type of change,	
			rate is the change of concentration	
			per unit time.	
			• Illustrates with examples that time	
			taken for a given constant change	
			can be used in rate measurements	
			(rate $\alpha 1/t$)	
			• Expresses that properties (colour	
			intensity, turbidity etc.) which	
			depend on the amount of a	
			substance or concentration can	
			also be used to compare rates.	
			Provides examples for slow	
			reactions where time can be easily	
			measured for the determination of	
			rates.	

Competency	Competency level	Contents	Outcome	Time
			• Identifies the factors affecting the rate of a reaction - temperature, concentration, pressure, physical nature (surface area of reactants), catalysts.	
	11.2 Uses molecular kinetic theory to explain the effect of factors affecting the rate of chemical reactions	 Energy diagram for a single step reaction Activation energy Requirements to be satisfied by reactant molecules for the occurrence of a reaction Collision of molecules An appropriate orientation Surmounting the activation energy Effect of temperature on reaction rate 	 Draws energy diagrams for a single step reactions . Defines the term activation energy. Lists the requirements essential for a reaction to occur. States that when temperature increases kinetic energy of molecules is also increased. Draws the simplified form of Boltzmann distribution curve for gaseous molecules at two different temperatures and compares the kinetic energy of molecules at different temperatures. 	06

Competency	Competency level	Contents	Outcome	Time
			 Explains the increase in rate of a reaction with temperature in terms of the increase of kinetic energy of molecules and thereby the number of collisions. Explains the increase of the number of collisions per unit volume per unit time using the concept of concentration. States that collisions having appropriate orientation is proportional to the total number of collisions. 	
	11.3 Controls the rate of a reaction by appropriately manipulating the concentration of reactants.	 Ways of express the rate of reaction Initial rate Instantaneous rate Average rate Effect of concentration on reaction rate Rate law, order with respect to components, order of a reaction (overall order) Rate constant 	 Displays initial rate, instantaneous rate and average rate of a reaction using suitable graphs. Explains how the order of the reaction with respect to a given reactant and concentration of that reactant affects the rate of the reaction. 	13

Competency Competency level	Contents	Outcome	Time
	 (zeroth order, first order and second order only) Half life for a first order reaction and its graphical representation (Equation is not required) Methods to determine the order of a reaction and rate constant Initial rate method <i>Experimental determination of the effect of acid concentration on the reaction rate between Mg and acids reaction</i> <i>Experimental determination of the effect of concentration on the reaction rate between Na₂S₂O₃ and HNO₃ reaction</i> 	 Defines the rate law for reactions as, rate = k [A]^x [B]^y. Defines the terms in the rate law. Writes the rate law (equation) for zeroth, first and second order reactions. Derives the units of the rate constant (coherent SI units and non-coherent SI units) for zeroth, first and second order reactions. Interprets the overall order of a reaction. Demonstrates graphically how the rate changes with concentration for a zero order, first order and second order reaction. Defines and interprets half-life of a reaction. Explains that half life of first order reactions does not depend on the initial concentration. 	

Competency	Competency level	Contents	Outcome	Time
			 Provides examples for reactions of different orders. Conducts experiments to illustrate zeroth order, first order and second order reactions. Determines order of reactions with respect to various reactants by handling appropriately the information obtained from experiments. Solves problems related to rate law and order of reactions. 	
	11.4 Investigates the effect of physical nature and catalysts on reaction rate	• Explanations of physical nature and catalysts on reaction rate	 States that when surface area of a solid reactant increases rate of reaction also increases due to the increase of number of collisions. Describes the effect of catalyst in terms of the activation energy for the reaction. 	06

Competency Competency level	Contents	Outcome	Time
11.5 Uses reaction mechanisms to describe the rate of chemical reactions.	 Elementary reactions Multistep reactions Energy diagrams Transition state and intermediates Rate determining step and its effect on the rate of overall reaction <i>Experimental determination of the order of reaction with respect to Fe</i>³⁺ <i>for the reaction between Fe</i>³⁺ <i>and I</i>⁻ 	 Draws energy profiles. Identifies the intermediates and transitions states of the energy 	11

Unit 12: Equilibrium

Competency	Competency level	Contents	Outcome	No. of Periods
12.0 Uses the concept of equilibrium and its principles to determine the macroscopic properties of closed systems in dynamic equilibrium.	12.1 Quantitatively determines the macroscopic properties of systems with the help of the concept of equilibrium.	 Systems in equilibrium (Dynamic processes and reversibility) Systems in equilibrium (Heterogeneous and Homogeneous) Chemical Ionic Solubility Phase Electrode Equilibrium law Equilibrium constant Chemical equilibrium K_p and K_c K_p =K_c(RT)^{Δn} Equilibrium point Factors affecting the equilibrium point Le - Chatelier Principle Experimental study of the characteristics of a dynamic equilibrium system using Fe³⁺/SCN ⁻ system Experimental study of the effect of temperature on the equilibrium system of NO₂ and N₂O₄ 	 Explains the dynamic equilibrium using the reversible reactions in closed systems. States macroscopic properties of a system remains unchanged after reaching the equilibrium. Uses physical and chemical processes such as changes of state, equilibria in solutions, chemical systems, ionic systems, sparingly soluble systems and electrodes as examples to describe the systems in equilibrium. States the equilibrium law. Writes the equilibrium constants (K_c: K_p) for the systems given. Derives the relationship between K_p and K_c. Explains the equilibrium point Describs how concentration pressure, temperature and catalysts affect the equilibrium point. 	

Competency	Competency level	Contents	Outcome	Time
			 States Le Chatelier principle to a disturbed system. Predicts the effect of Le Chatelier Principle due to small change in an equilibrium system. Solves problems based on K_p and K_c. Examines the effect of concentration on the equilibrium system Fe³⁺/ SCN⁻ Examines the effect of pressure on the equilibrium system NO₂/N₂O₄ 	
	12.2 Quantifies properties of ionic equilibrium systems related to weak acids, weak bases, acidic salts and basic salts	 Acids, bases and salts Theories of acids and bases Conjugate acids and bases Dissociation constants, K_w, K_a, K_b Ostwald law of dilution. pH value Calculation of the pH value of acids (monobasic), bases (monoacidic) Calculation of the pH values of salts. Acid – base titrations Simple calculations based on titrations Titration curves 	 Describes Arrhenius theory, Bronsted-Lowry theory and Lewis theory giving appropriate examples Explains conjugate acids and bases. Gives expressions for K_w, K_a and K_b. Derives equations for K_a and K_b and the law of dilution Derives the relationship between K_a and K_b of conjugate acid-base pairs. Solves problems using K_w, K_a and K_b Defines pH. 	20

Competency Competency level	Contents	Outcome	Time
	 Theory of indicators Determination of the equivalence point (visual methods -using indicators only) Selection of suitable indicators for titrations based on pK_{in} values(visual methods -using indicators only) <i>Experimental determination of the acidic/basic/neutral nature of aqueous solutions of salts by testing pH</i> <i>Titration between Na₂CO₃ and HCl using phenolphthalein and methyl orange</i> (not necessary to calculate <i>pH</i> at the equivalence point) 	 Calculates pH of aqueous solutions of acids and bases. Calculates pH values of salt solutions considering hydrolysis of cations and anions. Solves problems using titrations. States that acid-base (neutralization) indicators are either weak acids or weak bases. Expresses that indicators exhibit different colours for their unionized and ionized forms. States that <i>pH</i> range (colour change interval) of an indicator depends on the value of dissociation constant of the indicator (<i>K</i>_{In}). Points out that the selection of an indicator depends to the equivalence point pH of the titration or pH range in which abrupt <i>pH</i> change occurs. 	

Competency	Competency level	Contents	Outcome	Time
			 Applies theory of indicators to choose the correct indicator for a particular titration. Calculates the <i>pH</i> value of acid/base reactions at the equivalence point. Sketches the titration curves for different types of acid base titrations. States that near the equivalence point an abrupt pH change occurs for a small volume of the solution added. Discusses qualitatively the main features of the titration curve between Na₂CO₃ and HCl. Determines experimentally, the acidic/basic/neutral nature of aqueous solutions of salts by testing <i>pH</i>. Titrates between Na₂CO₃ and HCl using phenolphthalein and methyl orange. 	

Competency	Competency level	Contents	Outcome	Time
	12.3 Prepares buffer solutions according to the requirements	 Buffer solutions (qualitatively and quantitatively) Derivation of Henderson equation and its applications (monobasic and monoacidic systems only; calculations involving quadratic equations are not required.) pH of a buffer system 	 Define a buffer solution. Investigates buffer solutions qualitatively and quantitatively. Derives Henderson equation for monobasic and monoacidic buffer systems. Uses Henderson equation for simple calculations. Explains pH of a buffer system qualitatively and quantitatively. 	12
	12.4 Quantifies properties of equilibrium systems related to sparingly soluble ionic compounds (Heterogeneous ionic equilibria)	 Solubility product and ionic product (K_{sp}) Precipitation Solubility Common ion effect Application in qualitative analysis of cations (group analysis) <i>Experimental determination of the solubility product of Ca(OH)</i>₂ 	 States that some ionic compounds are very soluble in water but some are less soluble Applies the principle of equilibrium for a sparingly soluble electrolyte. Explains requirements for precipitation of ionic compound from the aqueous solution. Applies common ion effect. Identifies the cations by precipitation and subsequent solubility of the precipitate in different reagents. 	12

Competency	Competency level	Contents	Outcome	Time
			 Explains the solubility of the precipitate based on solubility product principle. Divides the cations listed into five groups, based on the solubility products of the ionic compounds of the cations under different conditions. Performs calculation based on solubility and solubility product, K_{sp}. 	
	12.5 Investigates how liquid - vapour equilibrium varies in single component systems. (Phase equilibria)	 Pure liquid systems Equilibrium between liquid and vapour Describing equilibrium in a liquid-vapour system in terms of molecular motion Saturated vapour pressure and boiling point Variation of vapour pressure of water and other liquids with temperature Critical temperature Phase diagram of simple component system Phase diagram of water Triple point Vapour pressure and boiling point 	 Defines a phase. Identifies pure liquid systems. Explains liquid-vapour equilibrium on the basis of molecular motion. Defines the saturated vapour pressure. Defines the boiling temperature. Explains the variation of vapour pressure of liquids with temperature. Identifies the relationship between the vapour pressure and the boiling point. 	05

Competency	Competency level	Contents	Outcome	Time
_			 Defines the critical point Names the triple point of water using the phase diagram. 	
	12.6 Investigates the variation of liquid - vapour equilibrium in binary liquid systems.	 Liquid - Liquid systems Totally miscible liquid - liquid systems Raoult law Ideal solutions Non- ideal solutions Phase diagrams for totally miscible liquid systems excluding azeotropes Vapour pressure – composition variation graphs Temperature – composition phase diagrams and Fractional distillation 	 Applies the principles of equilibrium to a binary liquid system to derive Raoult law. Defines an ideal solution. Explains how and why non-ideal solutions deviate from Raoult law, using graphs between composition and vapour pressure. Applies Raoult law to find liquid and vapour phase compositions at equilibrium. States that simple distillation can be used to separate non volatile components in a volatile liquid. Gives examples for a simple distillation. States that fractional distillation can be used to separate volatile components in a volatile liquid 	12

Competency Competency level	Contents	Outcome	Time
12.7 Investigates the distribution of substances between two immiscible liquid systems	 Totally immiscible liquid- liquid systems Partition coefficient <i>Experimental determination of distribution coefficient of ethanoic acid between water and 2 -butanol</i> 	 Explain the partition coefficient <i>K</i>_D. Solves problems using <i>K</i>_D. Determines experimentally, the distribution coefficient of ethanoic acid between water and 2- butanol. 	08

Unit 13: Electrochemistry

Competency	Competency level	Contents	Outcome	No. of Periods
13.0 Investigates the importance of electrochemical systems.	to understand the nature of solutes	 Conductance (1/R) Conductivity (as reciprocal of reactivity k =(1/A)1/R) Factors affecting conductivity Nature of solute: Aqueous solutions of strong, weak and non electrolytes, molten electrolytes. Concentration Temperature 	 Explains the terms strong electrolyte, weak electrolyte and non electrolyte. States examples for strong electrolyte, weak electrolyte and non electrolyte in an aqueous medium. Compares electrical conductors and ionic conductors in terms of current carrying entities Expresses that the electrode reactions at both electrodes are necessary to pass a current through an electrolyte Defines the terms resistance and resistivity. Defines the terms conductance and conductivity. States the factors that affect the conductivity of an electrolyte solution. 	07

Competency	Competency level	Contents	Outcome	Time
			 Derives the coherent and non coherent SI units for conductivity. Compares the conductivities of different water samples (Calculations of conductivity is not required) using given data. 	
	13.2 Investigates electrodes in equilibrium and electrodereactions related to them.	 Reversible electrodes in equilibrium and electrode reactions Metal - metal ions Metal - insoluble salts Gas electrodes (O₂, H₂, Cl₂) Redox electrodes eg Pt(s) Fe³⁺(aq),Fe²⁺(aq) 	 Sketches metal- metal ions electrode. Giving examples, writes the reversible electrode reactions for common metal-metal ion electrodes. Describes the existence of a potential difference between an electrode and its solution at the electrode/electrolyte interface. Illustrates different types of electrodes (Gas electrodes, metal- metal ion electrodes, metal- insoluble salt, redox electrodes). Writes the reversible electrode reactions for different types of electrodes. Defines the standard electrode. Denotes electrodes using the standard notation. 	10

Competency Competency level	Contents	Outcome	Time
Competency Competency level 13.3 Determines the properties of electrochemical cells.	 Contents Liquid junction Salt bridge Separator Cells without a liquid junction Electro chemical cells Cell reactions Electromotive force of a cell Electrode potential (<i>E</i>) Standard electrode potential (<i>E</i>°) <i>E</i>°_{cell} = <i>E</i>°_(Cathode) - <i>E</i>°_(Anode) (Nernst equation is not required) Different types of practical cells Daniel cell Electrochemical series Properties of elements in relation to their position in the series Relationship between position of metals in the electrochemical series and their occurrence and extraction Experimental determination of the relative position of commonly available metals in the electrochemical series. Preparation of standard Ag(s), AgCl(s)/Cl⁽(aq)electrode. 	 Outcome Defines the term electrode potential of an electrode. Introduces the standard hydrogen electrode as a reference electrode. Defines the term standard electrode potential of an electrode. Explains how to measure the standard electrode potential of an electrode. States the factors affecting the electrode potential. States the silver-silver chloride and calomel electrodes. Gives examples for electrochemical cells with diagrammatical representation Presents the conventional notation of an electrochemical cell with standard rules. Explains Electrochemical cells with and without a liquid junction. Writes the electrode reactions in a simple electrochemical cell. 	Time 15

Competency	Competency level	Contents	Outcome	Гіте
			• Defines the term electromotive	
			force.	
			• Solves simple problems related to	
			electromotive force.	
			• Describes the factors affecting	
			electromotive force.	
			• Names the cells uses in daily	
			life.(Leclanche cell, Lead	
			accumulator)	
			• Draws the diagram of Daniel cell	
			• Constructs the electrochemical	
			series using the standard electrode	
			potentials.	
			• Describes relationships between	
			the position of metals in the	
			electrochemical series and their	
			existence, method of extraction and	
			chemical properties.	
			• Determines the relative position of	
			commonly available metals in the	
			electrochemical series	
			experimentally.	
			• Prepares the standard	
			$Ag(s), AgCl(s)/Cl^{-}(aq)$ electrode in	
			the laboratory.	

Competency Competency level	Contents	Outcome	Time
13.4 Identifies the requirements to be fulfilled in the process of electrolysis and carries out related calculations using Faraday constant.	 Principles of electrolysis Electrolysis of water Electrolysis of aqueous CuSO₄/CuCl₂using copper electrodes Electrolysis of aqueous CuSO₄ using platinum electrodes Electrolysis of aqueous NaCl/Na₂SO₄ using carbon electrodes Electrolysis of molten NaCl (principle only) Application of Faraday constant to electrochemical calculations 	 Defines electrolysis. Describes principles of electrolysis. Predicts the products of simple electrolytic systems. Solves simple problems based on Faraday constant. 	08

Unit 14: Industrial chemistry and Environmental pollution

Competency	Competency level	Contents	Outcome	No. of Periods
14.0 Investigates the selected chemical industries to understand the applications of principles and identify industrial pollutants.	14.1 Investigates the production and uses of elements and compounds of <i>s</i> block	 Basic factors to be considered for designing a chemical industry Selection of raw materials Production of magnesium (from bittern solution) NaOH (membrane cell method) soap Na₂CO₃ - Solvay process Preparation of a soap sample in the laboratory 	 Lists out basic factors to be considered for designing a chemical industry. Describes factors to be considered to select natural raw materials for an industry. Describes the production of Mg, NaOH (membrane cell method), soap and Na₂CO₃ (Solvay process), their uses and the physico-chemical principles involved. Prepares a soap sample in the laboratory and describes how to improve the quality of the product. 	13
	14.2 Investigates the production and uses of the compounds and elements of p block elements	 Production and uses of Ammonia (Haber process) Nitric acid (Ostwald process) Sulphuric acid (Contact process) 	• Describes the method of production and the physicochemical principles involved in the production of ammonia, nitric acid, sulphuric acid and identifies their uses.	08

Competency	Competency level	Contents	Outcome	Time
	14.3 Investigates production and uses of <i>d</i> -blockelements and their compounds.	 Production and uses of titanium dioxide from rutile(Chloride process) Production and uses of iron using blast furnance 	 Describes the production and identifies the physicochemical principles used in the production of titanium dioxide. Describes the production and physico-chemical principles used in extraction of iron by blast furnance method. Describes the uses of TiO₂ 	04
14.4 Investigates the chemistry of polymeric substances.	 Addition and condensation polymers and polymerization processes Polythene, Polyvinyl chloride (PVC),polystyrene, teflon Polyesters and nylon Bakelite Plastic additives Natural polymers Structure, properties and uses of natural rubber (NR) Coagulation of rubber latex and prevention of coagulation NR vulcanization 	 Introduces polymers, monomers and repeating unit. Classifies polymers as natural and synthetic with examples. Classifies polymers according to the type of the polymerization reaction. Identifies the structures (monomer, polymer and repeating unit), properties and uses for given polymers. Describes the types of plastic additives and their effects on the environment. 	08	

Competency	Competency level	Contents	Outcome	Time
			 Describes structure, properties and uses of natural rubber. Describes vulcanization of rubber. Explains the process of coagulation of rubber and how it can be prevented. 	
	14.5 Investigates some chemical industries based on plantmaterials.	 Some plant based industries - ethanol, vinegar, biodiesel Extraction and separation of compounds from plants by steam distillation-(essential oils)(Structural formulae of specific compounds will not be tested) Uses of ethanol, vinegar essential oils and biodiesel <i>Extracting cinnamon oil from cinnamon leaves by steam distillation</i> <i>Preparation of biodiesel</i> <i>Determination of the percentage of acetic acid in vinegar</i> 	 Describes plants as a renewable raw material. Describes the production of ethanol and vinegar. Describes the production of biodiesel. Describes essential oils as complex mixtures of volatile constituents of plants. Explains the principles of steam distillation used to extract essential oils. Recognizes the uses of ethanol, vinegar, essential oilssand bio diesel. Extracts cinnamon oil from cinnamon leaves in the laboratory. 	15

oils.

Competency	Competency level	Contents	Outcome	Time
			• Determines the percentage of acetic acid in vinegar in the laboratory.	
	14.6 Common industrial pollutants	 Air quality parameters (level of CO_x, NO_x, SO_x, C_xH_y, particulate matter in air) Water quality parameters – physical and chemical (pH, temperature, dissolved oxygen (DO), COD, , conductivity, turbidity, hardness of water) Soil pollutants Industrial pollutants- (air pollutants and water pollutants) 	 Explains what a pollutant is. Identifies air and water quality parameters and name the. Describes air quality parameters (level of CO_x, NO_x, SO_x, C_xH_y). Identifies water quality parameters (physical and chemical), pH, temperature, dissolved oxygen, COD, conductivity, turbidity, hardness. Identifies soil pollution caused by solid waste and agrochemicals. 	06
	14.7 Chemistry of the air pollution by industrial emissions.	 Acid rains Photo- chemical smog Ozone layer depletion Global warming 	 Explains the chemistry of acid rains and their effect on the environment. Explains the chemistry of photo chemical smog and their effect on the environment. Explains the ozone layer depletion and their effect on the environment. 	06

Competency	Competency level	Contents	Outcome	Time
			 Explains the chemistry of greenhouse effect, global warming and their effect on the environment. Describes precautionary measures that can minimize air pollution. 	
	14.8 Chemistry of water pollution by industrial discharges	 Eutrophication by NO₃⁻ and PO₄³⁻ mainly caused by excessive use of fertilizers Dissolved organic compounds effluent from industries (e.g. latex industry) Heavy metal ions (of Cd, As, Pb, Hg) Chemical oxygen demand (COD) and dissolved oxygen(DO) Thermal pollution Acidity /Basicity Turbidity and hardness of water Determination of dissolved oxygen level in water by Winkler's method 	 Explains eutrophication and its consequences. Names dissolves organic pollutants in industrial discharges. Describes the consequences of dissolved organic pollutants. Explains the common heavy metal causing water pollution and their effect on the environment. Explains how to identify water pollution using the given parameters. Describes the precautional measures that can be taken to minimize pollution by industrial discharge. Determines experimentally the dissolved oxygen level in (fresh) water. 	07

4.0 Teaching - Learning Strategies

Global trend in present day education is to introduce competency based curricula which promote collaborative learning through student-centred activities where learning predominates over teaching. It is intended for the students to actively participate in activities which enhance the development of individual, social and mental skills. Emphasis is laid on the following aspects.

- Allow the students to acquire hands on experience.
- Direct students to acquire knowledge and information through reliable sources wherever necessary.

5.0 School policy and programmes

- The teacher has the liberty to follow any suitable teaching learning method to achieve the relevant learning outcomes.
- It is expected that the theoretical components of each unit will be dealt with the relevant practical components, which are given in italics.
- Capacity of students should be enhanced through extra-curricular activities, extensive use of supplementary reading materials and learning teaching aids such as Computer Assisted Learning (CAL) software.
- With a view to extending learning beyond the classroom activities and to highlight the students' special abilities, it is expected to involve students in cocurricular activities such as;
 - setting up school societies or clubs to pursue various aspects of chemistry
 - field trips to places where applications of chemistry can be observed and preparation of reports subsequently
 - organizing school exhibitions and competitions
 - organizing guest lectures on relevant topics by resource persons
 - producing school publications
 - organizing events such as debates, science days, etc.
- School management is responsible in providing services such as lab equipments, computer facilities, etc. and assistance within the school and from outside resources.
- In order to develop school policy and programmes it would be desirable to form a committee comprising relevant teachers and students.
- Most importantly, the school should serve as a role model to be followed by the students.
- School will develop its annual programmes, consisting of a variety of activities for achieving policy goals. In determining the activities to be undertaken during a particular year, the school will need to identify priorities and consider feasibility inrelation to time and resource constraints.

6.0 Assessment and Evaluation

Assessment and Evaluation should conform to the standards set by the Department of Examinations. However, school-based assessment should also be part and parcel as it paves way to give direct feedback to learners.